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This letter is based on the belief that at the core of every phenomenon lies 
a set of clear principles which can be visualized by the use of a relatively 
“simple” model (for example, the essence of a photoelectric effect, 
properties of metals, super fluidity, superconductivity can be explained as 
a collision, by the Kronig-Penney model, a quasiparticle spectrum, Cooper 
pairs, the Bogolyubov transformation). The goal of this paper is to 
strengthen the search for a similar model which can be used to understand 
the fundamental properties of HTSC. 
For two decades the problem of HTSC1 has been eluding theorists; many 
mechanism2 of HTSC has been offered but none of them succeeded to 
gather the support of the vast majority.  
It is clear that in order to generate a superconductive current electrons 
must correlate demonstrating some effective attraction needed to overcome 
strong Coulomb repulsion. The question is what is the nature of that 
effective attraction? 
One path is to follow the ideas behind BCS3 theory and looking for an 
agent (phonons, magnons, excitons, etc.) which can lead to an attraction 
effectively stronger than a Coulomb repulsion (at least for some electrons). 
A different path is to state that electrons do not need any “glue”4 in the 
form of additional agents.  
It is know that in HTSC electrons are strongly correlated, hence the 
electron-electron interactions cannot be seen as weak. 
The simplest approach to account for a strong interaction would be using 
the Hartree approximation. In this approach calculation of a wave function 
and an energy spectrum of a single electron is based on a solution of a self-
consistent equation similar to Eq.1 (for simplicity the system is assumed 
one dimensional, all common physical constants are set to unity; 
me = −e = ! =1): 
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In Eq.1 UL (x) represents the potential of a lattice, and UH (x) =
n( !x )
| x − !x |

d !x
4πε0

∫  is 

the Hartree potential calculated via electron density n(x) = |ψξ |
2∑ . Since 

the lattice potential is periodic UL (x + a) =UL (x) the wave functions of free 

electrons obey the Bloch theorem andψ0ξ (x + a) = e
ikaψ0ξ (x) , but in 

general adding the Hartree potential might destroy this property for ψξ (x)
functions. However, if electrons are localized close to the atomic sites one 
could expect that the electron density would have the same symmetry as 
the lattice has: n(x + a) = n(x) . In this case the symmetry of the Hartree 
potential mirrors the symmetry of the lattice potential: UH (x + a) =UH (x)
(meaningψξ (x + a) = e

ikaψξ (x) , i.e. periodicity property is also self-
consistent). One can conclude that a strong Coulomb repulsion helps 
electrons to be localized in an effective periodic potential 
UEff (x) =Up(x)+UH (x)  and essentially is not an interaction any more but a 
“tool” for a modification of an external lattice potential (similarly to a 
system of weakly interacting electrons where interactions lead to a 
modification of an electron mass into an effective electron mass). 
If a Coulomb repulsion is not needed to be compensated any more, there is 
no need for an agent which would be used to generate an effective 
attraction between electrons - as long as electrons themselves experience 
some attraction. 
If a HTSC is based on an antiferromagnetic material then the most of the 
electrons on the neighboring sites attract each other (when they have 
opposite spins – which a case for low temperatures), and this attraction (in 
the “absence” of Coulomb repulsion) is sufficient to present correlations 
needed for generating a new phase. 
The “simplest” model that accounts for a strong on-site repulsion and 
describes electrons which are localized and exhibit an antiferromagnetic 
order is the Hubbard5 1-D model described by Eq.2. 
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x,σ
∑ ax+1,σ

+ ax,σ + ax,σ
+ ax+1,σ )+U (

x
∑ ax, +

+ ax, +ax, −
+ ax,− )−µ (

x,σ
∑ ax,σ

+ ax,σ )                  (2) 

There has been published a vast amount of work designated to study the 
properties of the model in general and its application to understanding 
properties of HTSC. The most of the complications are related to the facts 
that the model does not have a small parameter, and that the aspects of the 
electrons’ behavior related to the real space are as important as the aspects 
related to the momentum space. 
A simple model – if exists – should lead to a low temperature energy 
spectrum of a system, calculated as energy levels of a system of 
quasiparticles (or collective excitations). In this case there should be a 
canonical transformation connecting creation and annihilation operators of 
actual electrons with creation and annihilation operators of quasiparticles. 
A well known Bogolyubov6 transformation is an example of such 
approach. However the original transformation ( a± p± = upbp± ± vpbp∓

+ , etc.) 
acts only in the momentum space and cannot be a good candidate for being 
applied to the Hubbard model. 
A similar transformation can be written for creation and annihilation 
operators acting in the real space (for example ax±

+ = uxbx±
+ ∓ vxbx±1∓ ), 

however due to the translational invariance the coefficients for such 
transformation would have to be constants (ux = u, vx = v), hence this 
transformation most probably would not be helpful due to its extreme 
simplicity. 
A canonical transformation which should unveil principal properties of the 
Hubbard model – if exists – should act simultaneously in the real and in 
the momentum spaces; it has to reflect the importance of the correlation 
between electrons occupying the neighboring sites, and at the same time 
introduce creation and annihilation operators of quasiparticles and acting 
in the momentum space. 
Below Eq.3 describes a transformation which satisfies both conditions 
(note that it cannot be reduced to a Fourier transition from the original 
Bogolyubov transformation into the real space). 
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In Eq.3 N represents the number of sites in a 1-D lattice with the lattice 
constant set to a unity. Real parameters up and vp are connected by 
condition up

2 + vp
2 =1  (and each is an even function of p). Eq.4 demonstrates 

an example of the inversion of transformation set by Eq.3. 

bp+
+ =

up
N

ax+
+

x
∑ eipx +

vp
N

ax+1−
p
∑ eipx                                            (4) 

As long as a transformation is defined, the following steps are well 
established and have been vastly used and described in the literature (the 
steps require routine calculations, which makes the model considered as 
“simple”). Namely, following the original work of Bogolyubov, one 
rewrites Hamiltonian (2) in terms of operators bpσ+ and bpσ ; all terms with 
four operators of the same kind (all four are bpσ+ or bpσ ) are being 
neglected; all other terms with four operators get simplified using a mean-
field approach. Basically all terms are being divided into three categories; 
(a) terms which can be written in a form which includes products like b+b
but does not include products like b+b+  or bb (these terms become a part of 
the Hamiltonian written in terms of the energy levels of the quasiparticles 
H ≈ Heff = E0 + εηbη

+bη∑ ); (b) terms which include products like b+b  or bb 
but which can be exactly eliminated by setting a specific condition on the 

parameters of the transformation (for example, product bp+
+ b

− p−
+

 is used as a 
common factor and the condition is derived by setting bp+

+ b
− p−
+ × ...{ }≡ 0 ); and 

(c) all other terms - which all are being neglected. In the end one has an 
expression for the ground state energy of the system, E0, and for excitation 
energy levels, εη (there are other but mathematically equivalent approaches 
to arrive at Hamiltonian Heff). 
Here the goal is narrowed down to looking at a singular 
parameter, ε0 = επ=0. If this parameter is not equal to zero the energy 
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spectrum has a gap (different from the one characterizing Mott transition), 
which represents the presence of a new phase (however, in order for this 
phase to be a superconductive phase having this gap is not sufficient, also 
anomalous correlation functions have to be not equal to zero, < axσa !x !σ >≠ 0
for some of the values of x and σ). 

Assuming that u0 = 1 (i.e. for p = 0 operators b0σ+  from Eq.4 are not defined 

by operatorsaxσ - this assumption seems natural but is not critical for the 
approach), one finds that ε0 > 0 if in Eq.2 Coulomb parameter U is large 
enough; specifically, U > UC; where: 

UC =
2t +µ

1
N

vp
2

p
∑ (1− np )+

1
N

up
2

p
∑ cos p np +

1
N

upvp cos p
p
∑ (1− np )

 

and bpσ+ bpσ | E0 > = np | E0 >  ( | E0 > = bpσ
+

|p|<pF ,σ
∏ | 0 > is the assumed ground state of 

the system with the vacuum state | 0 > such that bpσ | 0 > = 0 ; condition Ne 
= < E0 | axσ

+

x,σ
∑ axσ | E0 > , with Ne is the number of electrons, relates chemical 

potential µ with other parameters). 
This quick analysis supports three statements: (a) strongly correlated 
localized electrons do not need any additional “glue”-like agent in order to 
generate a state with a gap in the energy spectrum of the system; (b) the 
Hubbard model is sufficient to describe the appearance of a gap in the 
energy spectrum of a system of strongly correlated localized electrons; (c) 
there is a “simple” Bogolyubov-like transformation which acts 
simultaneously in real and momentum spaces and (supposedly) reflects the 
essential properties of the Hubbard model. 
The following full analysis which includes application of transformation 
given by Eq. 3 to two sublattices (reflecting the antiferromagnetic order of 
the parent material) will reveal if the transformation set by Eq.3 is indeed 
sufficient to build a “simple” model describing fundamental properties of 
HTSC. 
__________ 
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